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Abstract

This paper discusses key results from the literature in the field of local polynomial regres-
sion. Local polynomial regression (LPR) is a nonparametric technique for smoothing scatter
plots and modeling functions. For each point, x0, a low-order polynomial WLS regression is
fit using only points in some “neighborhood” of x0. The result is a smooth function over the
support of the data. LPR has good performance on the boundary and is superior to all other
linear smoothers in a minimax sense. The quality of the estimated function is dependent on the
choice of weighting function, K, the size the neighborhood, h, and the order of polynomial fit,
p. We discuss each of these choices, paying particular attention to bandwidth selection. When
choosing h, “plug-in” methods tend to outperform cross-validation methods, but computa-
tional considerations make the latter a desirable choice. Variable bandwidths are more flexible
than global ones, but both can have good asymptotic and finite-sample properties. Odd-order
polynomial fits are superior to even fits asymptotically, and an adaptive order method that is
robust to bandwidth is discussed. While the Epanechnikov kernel is superior is an asymptotic
minimax sense, a variety are used in practice. Extensions to various types of data and other
applications of LPR are also discussed.

1 Introduction

1.1 Alternative Methods

Parametric regression finds the set of parameters that fits the data the best for a predetermined

family of functions. In many cases, this method yields easily interpretable models that do a good

job of explaining the variation in the data. However, the chosen family of functions can be overly-

restrictive for some types of data. Fan and Gijbels (1996) present examples in which even a 4th-

order polynomial fails to give visually satisfying fits. Higher order fits may be attempted, but this

leads to numerical instability. An alternative method is desirable.

One early method for overcoming these problems was the Nadaraya-Watson estimator, pro-
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posed independently and simultaneously by Nadaraya (1964) and Watson (1964). To find an esti-

mate for some function, m(x), we take a simple weighted average, where the weighting function is

typically a symmetric probability density and is referred to as a kernel function. Gasser and Müller

(1984) proposed a similar estimator:

m̂h(x) =
n∑
i=1

Yi

∫ si

si−1

Kh(u− x)du (1)

where si = (Xi + Xi+1)/2, s0 = −∞, and sn+1 = ∞. This estimator is able to pick up local

features of the data because only points within a neighborhood of x are given positive weight by

Kh. However, the fit is constant over each interval, (si, si+1), and a constant approximation may

be insufficient to accurately represent the data. A more dynamic modeling framework is desired.

1.2 Local Polynomial Regression (LPR)

In local polynomial regression, a low-order weighted least squares (WLS) regression is fit at

each point of interest, x using data from some neighborhood around x. Following the notation

from Fan and Gijbels (1996), let the (Xi, Yi) be pairs of data points such that

Yi = m(Xi) + σ(Xi)εi, (2)

where εi ∼ N(0, 1), σ2(Xi) is the variance of Yi at the point Xi and Xi comes from some distribu-

tion, f . In some cases, homoskedastic variance is assumed, so we let σ2(X) = σ2. It is typically

of interest to estimate m(x). Using Taylor’s Expansion:

m(x) ≈ m(x0) +m′(x0)(x− x0) + . . .+
m(p)(x0)

p!
(x− x0)p. (3)

We can estimate these terms using weighted least squares. Minimze:
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n∑
i=1

[
Yi −

p∑
j=0

βj(Xi − x0)j
]2
Kh(Xi − x0). (4)

In (4), h controls the size of the neighborhood around x0, and Kh(·) controls the weights, where

Kh(·) ≡
K( ·

h
)

h
, and K is a kernel function. Denote the solution to (4) as β̂. Then m̂(r)(x0) = r!β̂r.

It is often simpler to write the weighted least squares problem in matrix notation. Therefore, letX

be the design matrix centered at x0:

X =


1 X1 − x0 . . . (X1 − x0)p
...

...
...

1 Xn − x0 . . . (Xn − x0)p

 . (5)

Let W be a diagonal matrix of weights such that Wj,j = [Kh(Xi − x0)]. Then the minimization

problem:

argmin
β

(y −Xβ)TW (y −XB) (6)

is equivalent to (4), and β̂ = (XTWX)−1XTWy. (Fan and Gijbels, 1996) We can also use this

notation to express the conditional mean and variance of β̂:

E(β̂|X) = β + (XTWX)−1XTWs (7)

V ar(β̂|X) = (XTWX)−1(XTΣX)(XTWX)−1, (8)

where s = (m(X1), . . . ,m(X2)) −Xβ and Σ = diag{K2
h(Xi − x0)σ

2(Xi)}. There are three

critical parameters whose choice can effect on the quality of the fit. These are the bandwidth, h, the

order of the local polynomial being fit, p, and the kernel or weight function, K (often denoted Kh

to emphasize its dependence on the bandwidth). While we focus mainly on estimation of m(x),
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many of these results can be used for estimating the rth derivative ofm(x) with slight modification.

The remainder of this section discusses early work on the subject of LPR, and Section 2 covers

some general properties. Section 3 discusses the choice of bandwidth, Section 4 covers the choice

of order and the kernel function, Section 5 discusses options for fast computation, and Section 6

details some extensions.

1.3 Early results for local polynomial regression

Stone (1977) introduced a class of weight functions used for estimating the conditional proba-

bility of a response variable, Y given a corresponding value for X . Particularly, Stone suggests a

weight function that assigns positive values to only the k observations with X-values closest to the

point of interest, x0, where “closest” is determined using some pseudo-metric, p, which is subject

to regularity conditions. A “k nearest neighbor” (kNN) weight function is defined as follows. For

each x0, let Wi(x) be a function such that Wi(x) > 0 if and only if i ∈ Ik, where Ik is an index

set defined such that i ∈ Il if and only if fewer than k of the points X1, X2, . . . , Xn are closer to

x0 than Xi using the metric p. Otherwise, let Wi(x) = 0. Then Wi(x) is a kNN weight function.

Moreover, the sequence of kNN weight functions, Wm is consistent if km → ∞ and km/m → 0

as m → ∞. Stone uses a consistent weight function to estimate the conditional expectation of Y

using a local linear regression. The proposed equation is equivalent to the linear case of (4).

Cleveland (1979) expanded upon this idea, suggesting an algorithm to obtain an estimated

curve that is robust to outliers. As in Stone (1977), we fit a p-degree local polynomial for each

Yi using weights wj(Xi) and note the estimate, Ŷi. To get robust estimates, we find new weights

according the size of the estimated residuals, ei = Yi − Ŷi, and letting δj = B(ej/6s), where s is

a scaling factor equal to the median of the ei’s, and B(·) is a weight function. (Cleveland suggests

using a bisquare weight function, see Section 4.2.) Finally, we compute the robust estimators by

fitting the weighted polynomial regression model for each point Xi using δjwj(Xi) as the new

weights. The combined weights in this estimator ensure that “near-by” points remain strongly

4



weighted, but points with high associated first-stage residuals have less influence over the final fit.

This keeps estimates near “outlier” points from being highly biased while still ensuring a smooth

fit that picks up local features of the data.

An early attempt at describing the distributional properties of the local polynomial regression

estimator is given in Cleveland (1988). Building on the methodology described above in Cleveland

(1979), they note that the estimated mean function, m̂(x0), can be written as a linear combination

of the Yi:

m̂(x0) =
n∑
i=1

li(x0)Yi. (9)

Since we are assuming that the εi are normally distributed, it is clear that m̂(x0) also has a

normal distribution with associated variance σ̂2(x0) = σ2
∑n

i=1 l
2
i (x0). These results are similar to

what we would have for standard polynomial regression and suggest that results from the standard

case may hold for LPR. Some relevant examples are given in Cleveland (1988).

2 Properties of Local Polynomial Regression estimators

2.1 Conditional MSE

Fan and Gijbels (1992) establish some asymptotic properties for the estimator described in

(4). In particular, they give an expression for the conditional bias and conditional variance of the

estimator for m̂(x) found by minimizing:

n∑
j=1

(Yn − β0 − β1(x−Xj))
2 α(Xj)K

(
x−Xj

hn
α(Xj)

)
. (10)

Note that the linear (p = 1) case of (4) is a equivalent to (10) when α(Xj) = 1. The conditional

bias and variance are important because they allow us to look at the conditional MSE, which is
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important for choosing an optimal bandwidth. (See Section 3

The results from Fan and Gijbels (1992) are limited to the case where the Xi’s are univariate.

Ruppert and Wand (1994) give results for multivariate data, proposing the following model:

Yi = m(Xi) + σ(Xi)εi, i = 1, . . . , n. (11)

where m(x) = E(Y |X = x), x ∈ Rd, εi are iid with mean 0 and variance 1, and σ2(x) =

V ar(Y |X = x) < ∞. A solution to the problem comes from slightly modifying (6). Consider

the case of local linear regression (p = 1). We now let

X =


1 (X1 − x0) . . . (X1 − x0)

T

...
...

...

1 (Xn − x0) . . . (Xn − x0)
T

 (12)

and denote W = diag{KH(x1 − x0), . . . , KH(xn,x0)}, where K is a d-dimensional kernel and

KH(u) = |H|−1/2K(H−1/2u), where H1/2 is the bandwidth matrix, analogous to h for the uni-

variate case. OftenH will be given a simple diagonal form, and thenH = diag(h21, . . . , h
2
d).

Using similar assumptions to the univariate case, we can give expression for the conditional

bias and conditional variance of m̂H(x). We work with the conditional bias and variance (given

X1, . . . ,Xn) because, by conditioning on the data, the moments of m̂H(x) exist with probability

tending to 1. The asymptotic properties of this estimator will depend on whether we are looking at

an interior point or a point near the boundary. For some interior point x0, we have the following:

E(m̂H(x0)−mH(x0)|X1, . . . ,Xn) =
1

2
µ2(K)tr(HHm(x)) + oP (tr(H)) (13)

V ar(m̂H(x0)|X1, . . . ,Xn) = {n−1|H|−1/2R(K)/f(x)}σ2(x)(1 + oP (1)). (14)
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In the above,Hm denotes the Hessian matrix (d×d-dimensional) of m and R(K) is the square

integral of K(u). In the lead term of the bias, note that HHm(x0) is the sum over each direction

of the product of the bandwidth times the curvature of m at x0. If there is very high curvature, an

estimator with a large bandwidth will struggle to approximate it accurately, which leads to a high

bias as (13) would suggest. The first part of the expression in (14) can be thought of as the inverse

of the effective sample size used for the fit. So as we would expect, the variance increase as the

effective sample size decreases. The relationship in these two expressions is similar to what we

see in the univariate case: the larger the neighborhood, the larger the bias. Conversely, when the

neighborhood becomes smaller, the variance will be large. (This bias/variance tradeoff is discussed

in Section 3.1.)

2.2 Minimax Efficiency

Fan (1993) showed that the local linear model using the Epanechnikov kernel optimizes the

linear minimax risk. Minimax risk is a criterion used to benchmark the efficiency of an estimator in

terms of the sample size necessary to obtain a certain quality of results. For example, if an estimator

m̂(x) is 95% efficient when compared to the “optimal” estimator, m̂opt(x), then an estimate based

on n = 100 data points using m̂(x) will have similar asymptotic properties to an estimate based on

95 observations using m̂opt(x). Fan et al. (1997) extended this result to LPR with order p as well

as the case of derivative estimation. So local polynomial regression is the best linear smoother in

this minimax sense for interior points.

2.3 Performance at the boundary

One advantages of LPR over other smoothers is its relatively good performance near the bound-

ary. For many nonparametric smoothers, estimates of points near the boundary of the support of

the data behave differently from those on the interior. Let f be the marginal distribution function

for theX i. Denote the support of f by supp(f). We say x is an interior point if
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{z : H−1/2(x− z) ∈ supp(K)} ⊂ supp(f), (15)

where supp(K) is the support of KH(x− •). So x is an interior point if the neighborhood around

x as defined byH does includes points outside the support of f .

Fan and Gijbels (1992) note that previous estimators, such as the Nadaraya-Watson and Gasser-

Müller estimators described in Section 1.1 converge more slowly at the boundary. However, they

show that the convergence rate of the estimator they propose (see Section 3 is the same for bound-

ary points and interior points. Ruppert and Wand (1994) note a similar results for the multivariate

case. However, in both situations, the conditional variance is larger in practice for points on the

boundary than for points on the interior. Fan and Gijbels attributed this to the lower number of

data points being used for estimations near the boundary, but Ruppert and Wand also note that

the estimates for the intercept and slope parameters are not asymptotically orthogonal as they are

for interior point estimations. Finally, Cheng et al. (1997) show that no linear estimator can beat

LPR on the boundary in a minimax sense in terms of MSE. Rather than by showing directly that

other proposed boundary corrections are inferior, they show that the local polynomial estimator

is optimal in this minimax sense, and therefore any other estimator cannot give a substantial im-

provement in efficiency on. So LPR is minimax efficient for both interior and boundary points.

For futher discussion, also see Hastie and Loader (1993)

3 Bandwidth selection

3.1 The bias-variance tradeoff

The choice of bandwidth, h, is of critical importance for local polynomial regression. The

bandwidth controls the complexity or how “jagged” the fit is. Smaller values for h will result in

less smoothing while larger values produce a curve with fewer sharp changes. Additionally, there

is a tradeoff between variance and bias. Larger values for h will reduce the variance, since more
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points will be included in the estimate. However, as h increase, the average distance between these

“local” points and x0 will also increase. This can result in a larger bias. A natural way to choose

a bandwidth and balance this tradeoff is by minimizing the mean squared error (MSE). (Fan and

Gijbels, 1996) In local regression settings, we must also choose whether to find a bandwidth, h,

that is optimal for the full range of our data (a global bandwidth) or choose an hx that is optimal at

each point but varies depending on x. This latter choice is referred to as a variable bandwidth. We

focus on global bandwidths first.

3.2 Global bandwidth selection

Integrating the conditional MSE over the parameter space gives an expression for Mean In-

tegrated Squared Error (MISE). Minimizing MISE is a common method for choosing an optimal

bandwidth. (Ruppert et al., 1995, Xia and Li, 2002, Fan and Gijbels, 1992) Estimating the min-

imizer, hopt, can either be done empirically using cross-validation (CV) techniques or asymptot-

ically using expressions for the asymptotic bias and variance as described in 2.1. These results

give us an expression for the conditional MSE, but this expression includes unknown terms (par-

ticularly, m′′(x), σ(x), and f(x)) that we must estimate. There are many approaches for finding

estimates for these unknowns, varying from simple “rules of thumb” to complex, multi-stage meth-

ods, but they are unified in that they “plug in” estimates for these unknown terms to solve for hopt.

CV methods simply choose the value for h (generally from some grid of possible values) that

minimizes the CV error, typically using leave-one-out CV. We discuss CV methods first.

Fan and Gijbels (1992) describe a simple method for estimating h using cross-validation. To

find an estimate for the global optimal bandwidth, we minimize:

n∑
j=1

(Yj − m̂−j(Xj))
2, (16)

where m̂−j(·) denotes the estimated mean function leaving out the jth term. Note that the depen-
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dence of m̂(·) on h is suppressed. Xia and Li (2002) add a weight function to reduce boundary

effects, solving:

ĥn = argmin
h

CV (h); CV (h) = n−1
n∑
j=1

(Yj − m̂−j(Xj))
2G(xt). (17)

The resulting estimator, ĥn is asymptotically optimal with respect to MISE:

lim
n→∞

(
MISE(ĥn)

infhMISE(h)

)
= 1, (18)

Additionally, ĥn is asymptotically normal, centered about the true optimal bandwidth (as defined

by MISE), hopt. This estimator also has good finite sample properties, as demonstrated via sim-

ulation. Stable estimates of hopt can be obtained through the use of higher-order polynomial fits,

particularly when sample sizes are large (n > 200). Chapter 3 of Wand and Jones (1995) also

provides a good description of CV techniques in this context. Li and Racine (2004) derive the

rates of convergence for bandwidths chosen through cross-validation and show that the resulting

estimators are asymptotically normal about the true value. Unlike Xia and Li (2002), these results

can be applied to multivariate problems.

The other school of thought for obtaining global bandwidths “plugs in” estimates of the un-

known terms in an expression for the asymptotic MSE and minimizes the resulting function. Rup-

pert et al. (1995) provide a global bandwidth selection algorithm that performs well relative to

cross-validation estiamtors in terms of both asymptotics and practical performance. Expressions

for estimating the unknowns are given, and three “plug-in”-type estimators are proposed: a simple,

“rule of thumb” estimator, ĥROT , a “direct plug-in” estimator, ĥDPI , and a “solve-the-equation”

estimator based on solving a system of equations, ĥSTE . The simplest is ĥROT , which estimates

the mean function and variance by dividing the interval into blocks and fitting quartic functions.

The direct plug-in estimator is a two-stage estimator which uses the same quartic estimates from
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ĥROT to obtain first-stage estimates. Finally, ĥSTE is computed by solving a system of equations

derived using estimates from the the ROT and DPI estimators.

In terms of theoretical performance, ĥROT is based on an inconsistent estimator and thus has

no consistency properties. However, the other two estimators are covergent to the MISE-optimal

bandwidth. In simulation, all three estimators performed well, although ĥROT had a tendency

to “undersmooth,” and ĥSTE occasionally chose bandwidths that were larger than optimal (twice

out of 3000 trials). While the differences between ĥDPI and ĥSTE were small, the DPI estimator

performed best in all but one setting. Another global plug-in estimator is proposed by Fan and

Gijbels (1995a) is discussed in the next section.

3.3 Variable bandwidth selection

Variable bandwidths provide a compelling alternative to global bandwidths since they are more

flexible and can respond to the local properties of the data. An optimal estimator will choose

smaller bandwidths for points where the nearby data is jagged and larger bandwidths where the

data is smoother and more linear.

Using the model given in (10), Fan and Gijbels (1992) attempt to find a function αopt(x) to

minimize Average Mean Integrated Squared Error (AMISE). The resulting expression for αopt(x)

is:

αopt(x) =


(
fX(x)[m′′(x)]2

σ2(x)

)1/5
if W (x) > 0,

α∗(x) if W (x) = 0.
(19)

where W (x) is a nonnegative weight function and α∗(x) can take any values greater than 0. (This

result is given as Theorem 3 in Fan and Gijbels (1992).) Note that the AMISE for a global band-

width is obtained by setting α(·) = 1. Comparing the AMISE for the optimal constant and optimal

variable bandwidths, we see that
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AMISEv,opt ≤ AMISEc,opt. (20)

So asymptotically, the variable bandwidth estimator is better than the global bandwidth estimator

by mean integrated squared error. Also, Fan and Gijbels (1992) show that the “plug-in” estimator,

m̂(x, α̂opt) is asymptotically equivalent to m̂(x, αopt), which allows us to show that the plug-in

estimator is asymptotically normal about the true mean function.

As in the case of global plug-in estimators, the quality of our estimate, α̂opt(·) will depend on

the quality of our estimates for the unknown functions, f(x), m′′(x), and σ2(x). Cross-validation

is suggested as a method to obtain estimates for f(x) and m′′(x), while an estimate for σ2(x) can

be obtained using the residuals, Ŷj = Yj − m̂(Xj). These estimates are plugged into (19) to give

us α̂n,opt(·), which in turn is used to calculate m̂(·, α̂n,opt).

Schucany (1995) also proposes a variable bandwidth selector for kernel regression which can

be extended for local linear regression. This estimator is based on the case where the values for

Xi are equally-spaced, (Fan and Gijbels (1992) assumed a continuous, random distribution for the

data with bounded support) leading to the nonparametric regression model:

Yi = m(i/n) + ei, i =, . . . , n; ei
iid∼N(0, σ2). (21)

An expression for the optimal bandwidth is given by:

hSCHopt (x) =

(
σ2A

2pnB(x)2

)1/(2p+1)

, (22)

where A is a constant dependent upon the kernel and B(x) is an approximation for the bias. To

practically estimate hopt(x), we need to find estimates σ2 and Bt. Schucany (1995) suggest an

estimator for B(x) that is calculated using a pilot bandwidth, so the quality of our final estimator,

ĥSCHopt will depend on the choice of this “pilot bandwidth.” To estimate σ2, any
√
n-consistent
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estimator is sufficient. It can be shown that ĥt/hopt(x) converges to 1 in probability, but the rate of

convergence depends on the choice of pilot bandwidths. This local estimator compared favorably

to a global bandwidth estimator in simulation.

Fan and Gijbels (1995a) and Fan et al. (1996) propose two-stage, “data-driven” global and

variable bandwidth estimators and flesh out their asymptotic and finite sample properties. First, we

choose a pilot bandwidth using a residual squares criterion (RSC). RSC is defined thus:

RSC(x0;h) = σ̂2(x0)[1 + (p+ 1)V ], (23)

where V is the first diagonal element of (XTWX)−1(XTW 2X)(XTWX)−1. We can now

choose a global bandwidth selector based on integrated RSC:

IRSC =

∫
[c,d]

RSC(y;h)dy (24)

Multiplying the minimizer of (24) by adjustment factor determined by the kernel, K (for de-

tails, see Fan and Gijbels (1995a)) gives us a pilot estimate of the global optimal bandwidth denoted

ĥRSC . (Note that ĥRSC depends on the choice of p and can be generalized for estimating the rth

derivative.) Using this, Fan and Gijbels (1995a) now propose both global and variable bandwidth

estimators. The global estimator is a simple refinement using cross-validation:

ĥRSC2 = argmin
h

CV (h),

{∫
[c,d]

M̂SEp,r(y;h)dy

}
(25)

A variable bandwidth selector is chosen by breaking the support of the data into k subintervals,

denoted Ik. For each interval, we minimize

IRSC(h) =

∫
Ik

RSC(y;h)dy, (26)
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to find a pilot bandwidth for each subinterval. Smoothing over the resulting step function by locally

averaging lets us fit an order-(p+ 2) polynomial over the support of the data. We use the estimates

from this fit as pilot estimates and for each Ik, solve (25). Smoothing the step function resulting

from these refined estimates, we get an estimate for the optimal variable bandwidth function.

Simulation showed that the refinement produced substantial gains in terms of speed of con-

vergence. Also, the variable bandwidth estimator had good properties when compared against the

global bandwidth estimator, including the case where the underlying function was linear and hence

a constant bandwidth was actually the optimal choice.

Fan et al. (1996) built on the preceding by proving some additional theoretical results. Partic-

ularly, they give an asymptotic expansion of the conditional bias and variance, which allows us to

determine their rates of convergence, showing that ĥRSC converges to hopt. These results are also

extended for derivative estimation.

Prewitt and Lohr (2006) propose a variable bandwidth estimator that reduces the need to esti-

mate unknown equations. Fan and Gijbels (1996) treated f as unknown and were forced to estimate

it, while Schucany (1995) assumed equally-spaced data. Rather than use an estimate of f , Prewitt

and Lohr use the eigen values of Mp = n−1XT
t WtXt to construct consistent estimators of the

conditional variance and conditional bias. They construct their estimator for m(x) in two stages.

The first stage estimates ĥ1 by minimizing the AMSE(t, h) at the point x. This preliminary es-

timator is consistent but can be improved upon substantially. Substituting ĥ1 for hopt and using

the expressions for conditional bias and variance derived using the eigen value representation, they

construct a second-stage estimator for AMSE, ÂMSE2(x, h). Both additive parts of this second

stage estimator have the local variance σ2(x) as a common factor, so we do not need to estimate

σ2(x) when minimizing ÂMSE2(t, h). Thus, the second-stage estimator is not directly dependent

on estimating either the variance function or the distribution of the data.

While this method is asymptotically equivalent to the previous methods presented, it seems to

perform better in finite sample. Prewitt and Lohr (2006) compared their two-stage method to the
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variable method suggested by Fan and Gijbels (1995a). The eigenvalue method showed substantial

improvement over the “global over subinterval” method of Fan and Gijbels in terms of integrated

squared error (ISE). In application, the estimated mean curve appeared somewhat jagged, and a

five-point moving average was suggested for a smoother-looking curve.

In this section, we have seen a variety of different methods for choosing bandwidths. In prac-

tice, few of the variable methods are used due to computational difficulty. And while the “plug-in”

methods can be superior to CV methods, CV methods are often far simpler to implement. Indeed,

most existing software for R uses CV methods. (See Section 5.)

4 Other model specifications: choosing p and K

4.1 Choosing P

In addition to choosing the optimal bandwidth, it is also important to choose the appropriate

order of polynomial to fit. As when choosing a bandwidth, there is a tradeoff between bias and

variance. Higher-order polynomials allow for precise fitting, meaning the bias will be small, but as

the order increases, so does the variance. However, this increase is not constant. The asymptotic

variance for m̂(x) only increases whenever p goes from odd to even. There is no loss when going

from p = 0 to p = 1, but going from p = 1 to p = 2 will increase the asymptotic variance. This

strongly suggests only considering odd-ordered polynomials, since the gain in bias appears to be

“free”, with no associated cost in variance. (Fan and Gijbels, 1995a, Ruppert and Wand, 1994)

Fan and Gijbels (1995b) suggest an adaptive method for choosing the correct order of polyno-

mial based on local factors, allowing p to vary for different points in the support of the data. The

resulting estimator has the property of being robust to bandwidth. This means that if the chosen

bandwidth is too large, a higher order of polynomial will be chosen to better model the contours

of the data. If the chosen bandwidth is too small, a lower order polynomial will be fit to help make

the estimates numerically stable and reduce the variance. The algorithm for adaptive order fitting
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is outlined thus:

Construct a grid of points, {xj : j = 1, . . . , ngrid} and choose a maximum order to be con-

sidered, pmax. Fit a standard polynomial regression of order pmax + a in order to obtain “pilot”

estimates for β̂∗pmax
, . . . , β̂∗pmax+a. Using these, estimate the MSE of the fit at each grid point for

each order up to pmax and smooth across the grid points to get an estimate of the MSE as a function

of x for each candidate p. Denote this function M̂SEp(x0). Then for every grid point, xj , choose

the p that minimizes M̂SEp(xj), and denote this pj .

In simulation, this method demonstrated the “robust to bandwidth” property. Estimates using

the adaptive bandwidth selector were essentially the same across a variety of bandwidths differing

by at most a factor of 3. Moreover, the adaptive algorithm outperformed the local linear regression

in terms of mean absolute deviation error (MADE). Particularly, the adaptive order fit chose mostly

linear fits except in regions of high curvature, which is where a higher-order fit would be desirable.

This method also didn’t overfit, performing well in the case where the true function was a straight

line and the true optimal fit was linear everywhere.

Although adaptive order fitting is robust to bandwidth, consideration should still be given to

choosing h. Fan and Gijbels (1995b) suggest a simple rule of thumb for computational efficiency.

4.2 Choosing K

Most of the results discussed in previous sections require assumptions about K. All assume

that K is a symmetric, unimodal, and most assume the existence of some moments. Fan and

Gijbels (1992) require all moments to exist while others only require a finite number. It is also

common to assume a bounded support for K and that K be smooth, but these are not universal.

The most commonly used kernel functions are the standard normal density and kernels of the form:

K(x, q) =
(
22q+1B(q + 1, q + 1)

)−1
(1− x2)I{|x|<1}, (27)
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where B(·, ·) is the beta function. For q = 0, 1, 2, 3 respectively, these are called the uniform,

Epanechnikov, biweight, and triweight kernels. The triangular kernel, K(x) = (1− |x|)I{|x|<1} is

also used occasionally, but it lacks the smoothness property. (Wand and Jones, 1995) In Section

1.3, kNN weighting schemes were discussed, and each of the above kernels can be modified to

act as a kNN weight function by defining the bandwidth in the appropriate manner. Since the

kernels mentioned above meet all of the standard assumptions, choosing kernel that is optimal in

some sense may be desirable. The Epanechnikov kernel is optimal in the sense that it attains the

minimum AMISE most quickly in terms of sample size, but the others, including the Gaussian are

not very much slower. Thus, the decision may come down to the preference of the practitioner. For

example, the Epanechnikov kernel has discontinuous first derivatives which may be undesirable,

so the Gaussian kernel may be chosen instead. (Wand and Jones, 1995)

5 Efficient computational methods for LPR

Local polynomial regression is more computationally complex than standard regression tech-

niques, since a model must be fit for each observed data point. With “brute force” methods, it

would take approximately n times longer to fit a local linear regression than it would take to fit a

“global” linear regression even if a uniform kNN weighting function was used. When we add in

kernel evaluations and complex algorithms for choosing bandwidths and orders, the problem has

the potential to get computationally difficult quickly. Many methods for choosing h and p rely

on pilot estimates or cross-validation. (Fan and Gijbels, 1995a, Prewitt and Lohr, 2006, Fan et al.,

1996) This necessitates solving the LPR minimization repeatedly. Therefore, a good way to reduce

overall computation time is to find a quick method for solving this minimization.

Fan and Marron (1994) propose two methods for solving a local polynomial regression prob-

lem. The first of these, the “updating” method, is most easily explained by imaging the data to

come from an equally-spaced grid of design points. Recall that the Nadaraya-Watson estimator is

essentially a weighted average over the design points in the neighborhood of x0. Once we have
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computed m̂(Xj) for the N-W estimator, we can obtain m̂(Xj+1) by removing Yj−ih and adding in

Yj+ih+1. This is a reduction from O(n2h) operations to just O(n). This idea can be easily general-

ized to non-equally-spaced designs provided we keep the uniform kernel, and variable bandwidths

can be accommodated without difficulty. Non-uniform kernels are more complex, but many (such

as the Epinechnikov kernel) can be expanded in ways that lends themselves to updating.

The second method proposed is a “binning” procedure. This significantly reduces the number

of kernel evaluations necessary to fit a local polynomial regression. The first step is to create an

equally-spaced grid of g points, denoted x∗1, . . . , x
∗
g. Each data point is then mapped to the nearest

grid point, Xi 7→ xj(i), and an index set corresponding to each grid point is created: Ij = {i :

Xi 7→ x∗j}. Then for each grid point, we can “summarize” the corresponding binned data with

the bin average, Ȳj(i), and the bin count, cj = #{Xi : i ∈ Ij}. Now, we can estimate m(·) using

approximations form the bins. While there is some reduction in the number of calculation since

there are now g < n points on which to evaluate, the major gains are due to the equally-spaced

grid. Many of the remaining kernel evaluations will end up being the same. Let ∆ = xj − xj−1 be

the “bin width.” Then xj − xj−k = k∆ for every j. This leads to large computation savings, since

Kh(xj′ − xj) = Kh(∆(j′ − j)) ∀j.

The net result is a decrease from O(n · g) kernel evaluations to O(g). For some, the reliance

on the approximation by mapping the data to grid points may be too rough. An elegant solution to

this is available through “linear binning”. Instead of mapping data points to the nearest grid point,

we “split” each data point, with one part going to each of the two nearest grid points along with an

associated weight describing the distance the original data point was to that grid point. So if X0

is directly between xj and xj+1, a weight of 1/2 will be given to each of the two bins. A general

function for this weight can be written thus:

WI,j =

(
1− |Xi − xj|

∆

)
+

(28)
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The new bin counts and bin “averages” can now be written:

cj =
n∑
i=1

wI,j and Ȳ ∗j =
n∑
i=1

wI,jYi. (29)

Linear binning has the same computational requirements as simple binning, and since it is more

precise (see Hall and Wand (1996)), it is clearly preferred to simple binning. Numerous packages

exist for computing LPR in R, particularly, the locfit and KernSmooth packages (Loader, 2007,

original by Matt Wand. R port by Brian Ripley., 2009), and the loess function. (R Development

Core Team, 2009) Another useful reference for computational issues in LPR is Seifert et al. (1994).

6 Extensions of local polynomial regression

Algorithms have been developed to apply LPR to difficult types of data. Cleveland (1979)

constructed a LPR estimator robust to outliers. (See 1.3.) Functions with jumps in their derivative,

referred to as “changepoints” can also be difficult to estimate using traditional methods. It is

possible to get a good estimator using local methods by choosing a variable bandwidth such that

the “change points” are not included in the local fit. Spokoiny (1998) chooses the largest interval

for each point, x0, such that the residuals from the resulting estimator are sufficiently small. This is

checked using a test statistic that becomes large and enters the rejection region when the residuals

are large. Intervals containing changepoints will have test statistics in the rejection region with

probability close to 1, so the estimated function, m̂(x) will be based on intervals on which the true

function is smooth.

The variance for standard estimators can blow up if an insufficient number of data points are

given positive weight (ie, if the chosen bandwidth is small), as can be the case for sparse or clus-

tered data. The ridging estimator proposed by Seifert and Gasser (2000) deals with this problem by

adding a shrinkage term to the estimator, ensuring that the conditional variance remains bounded.

LPR can also be applied to derivative estimation. Li et al. (2003) propose a method for estimating
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the expectation of the derivative of a mean function. This is done using a sample average of the es-

timated derivative function. The asymptotic distribution is derived, and the estimator is compared

with existing techniques.

Due to the difficulty in the implementation nonparametric models for multivariate data, an

additivity assumption may be imposed. For d-dimensional data, we have:

E(Y |X = x ≡ (x1, . . . , xd)) = m(x) = m1(x1) + · · ·+md(xd) (30)

A popular method for fitting such a model is the backfitting algorithm, proposed by Buja et al.

(1989) . In the context of local polynomial fitting, Opsomer and Ruppert (1997) give sufficient

conditions for convergence of the backfitting algorithm and give the asymptotic properties of the

estimators for the d = 2 case. Existence and uniqueness for m̂1 and m̂2 is proved given a few

standard assumptions.

LPR also has applications beyond smoothing. Alcala et al. (1999) use LPR to test whether

a mean function belongs to a particular parametric family. Under the null hypothesis that m(x)

belongs to the specified family, both parametric regression and LPR give consistent, unbiased

estimates. A test statistic using these is constructed, and if the discrepancy is too great, H0 is

rejected and we conclude that the function is not in the specified family.

Kai et al. (2010) propose an alternative to LPR in the form of local composite quantile re-

gression (CQR). While LPR is the best linear smoother (see Section 2.2), CQR is not a linear

estimator, so it may still be an improvement. Indeed, for many common error distributions, this

method appears to be more efficient asymptotically than LPR. LCQR can also be applied to deriva-

tive estimation.
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